컴퓨터 및 VLSI 특론

Embedded Systems

Eui-Young Chung

Outline

□ 연구실 소개

SoC architecture

Solid-State Disk

Outline of Design Technology Lab (DTL)

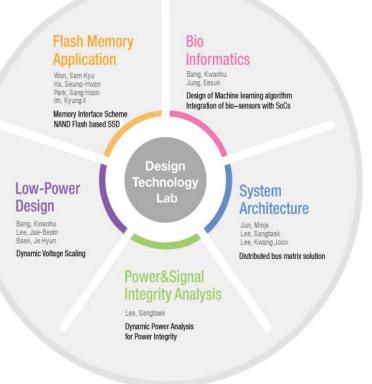
DTL I Design Technology Laboratory	YONSEI UNIVERSITY
HOME I RESEARCH I MEMBERS I PUBLICATIONS I PATENTS I PROJECT I COURSES I CON	FERENCES CONTACT
Bio Informatics Flash Memory Application Power & Signal Integrity Analysis Low-Power Design System Architecture System Architecture Design Archite	Low-Power Design Sh Memory Dication
COPYRIGHT 2008 YONSEI UNIVERSITY. Design Technology Lab. ALL RIGHT RESERVED. Engineering Building #3 C229 Yonsei University, Sinchon-dong, Seodaemun-gu, Seoul 120-749, Republic of Korea +82-2-2123-7826 khbang@dtl.	yonsel.ac.kr

Members (as of Mar. 2011)

- PhD candidates: 5
- Master candidates: 9

연세대학교 전기전자공학부 Design Technology School of Electrical and Electronic Engineering Laboratory

연구실 소개


❑ 구성원

5 (박사과정) + 9 (석사과정) (학연 4명: 삼성, LG, 하이닉스)

□ 연구 분야

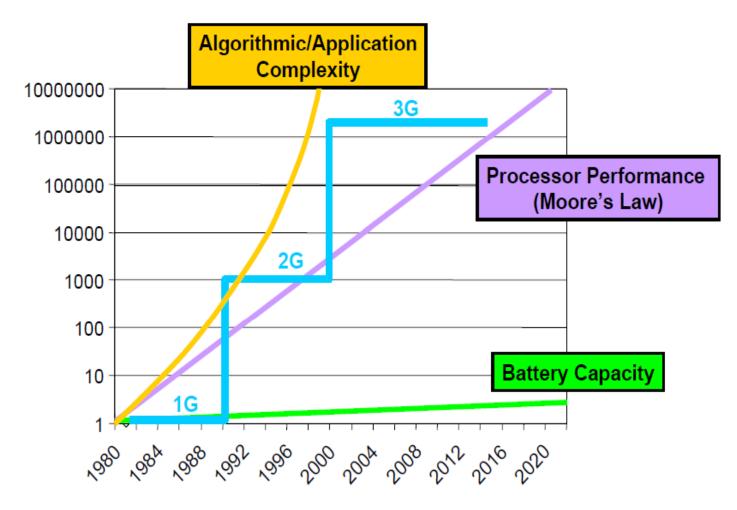
- SoC / Computer / Bio
 - HW + SW
- Industry-aligned area
 - SoC / Computer
 - Solid-State Disk (SSD)
 - System architecture
 - Low power design
 - VLSI CAD
- Academia interests
 - Bio-informatics
 - Parallelization
 - Machine learning

연구 실적

❑ On-going projects (연 3억내외)

- SSD 관련 연구: 삼성 / 하이닉스 / 한국연구재단 기초 연구
- Low power design 관련 연구: 한국연구재단, LG
- System Architecture 관련 연구: 한국연구재단
- Bioinformatics 관련: 한국연구재단 신진연구
- □ 논문
 - SCI(E) 급 논문 22편 (책임 15편) from 2005.09
 - 유관분야 grand slam
 - IEEE TC, IEEE TCAD, IEEE TVLSI
 - IEEE transaction or IF > 3 이상 논문: 12편

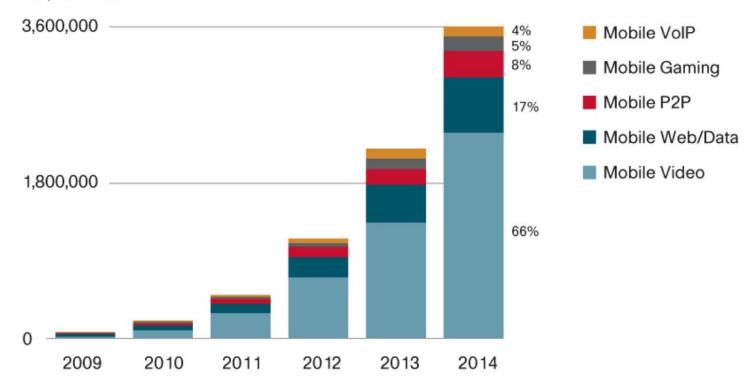
Outline


□ 연구실 소개

□ SoC architecture

Solid-State Disk

System Functional Requirements



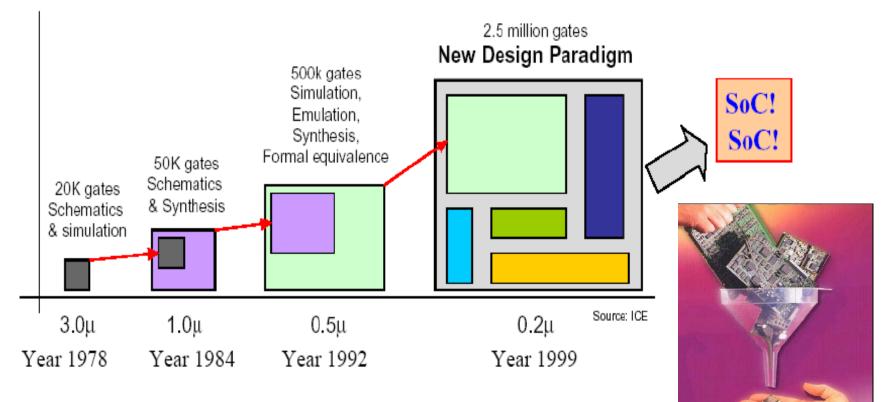
Source : Processor design System-on-Chip computing for ASICs and FPGAs

Data Increase and classification

Mobile video will account for 66% of global mobile data traffic by 2014

TB per Month

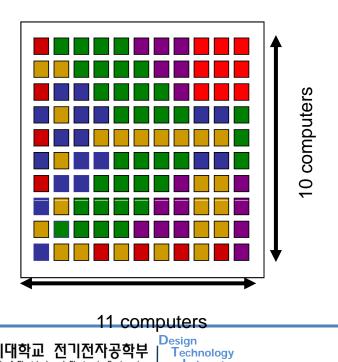
Source: Cisco VNI Mobile, 2010

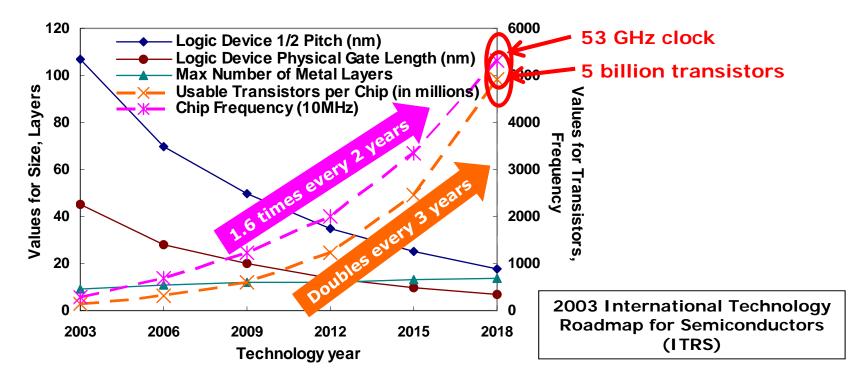

Data-intensive applications

More computing power

- Multi- / Many- core processing
- Higher data communication bandwidth
 - High-speed on-chip interconnects
 - Fast storage devices
 - On-chip memories as well as external storages
 - DRAMs
 - SSDs
- More power demanding
 - Reduce the power of frequently used resources
 - On-chip interconnects
 - Storages

Evolution of Microelectronics


Yesterday's chip is today's function


Billion Transistor Era

- I billion transistor SoCs are expected to be used in products by 2008.
 - Tens or even hundreds of computer-like resources in a single chip.
- According to ITRS, SoCs at 50nm will have 4 billion transistors and operate at 10Ghz in the next decade.

Silicon Technology Advance

High-volume, high-frequency chips

High integration density

Laboratory

•

School of Electrical and Electronic Engineering

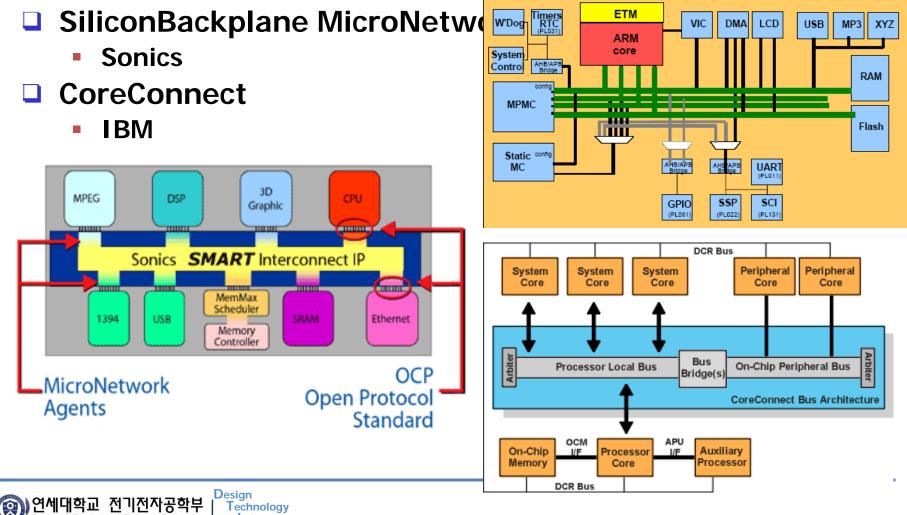
Macrosystems ⇒ Microsystems

Complex on-chip communication requirements 대학교 전기전자공학부 Technology

System-on-Chips (SoCs)

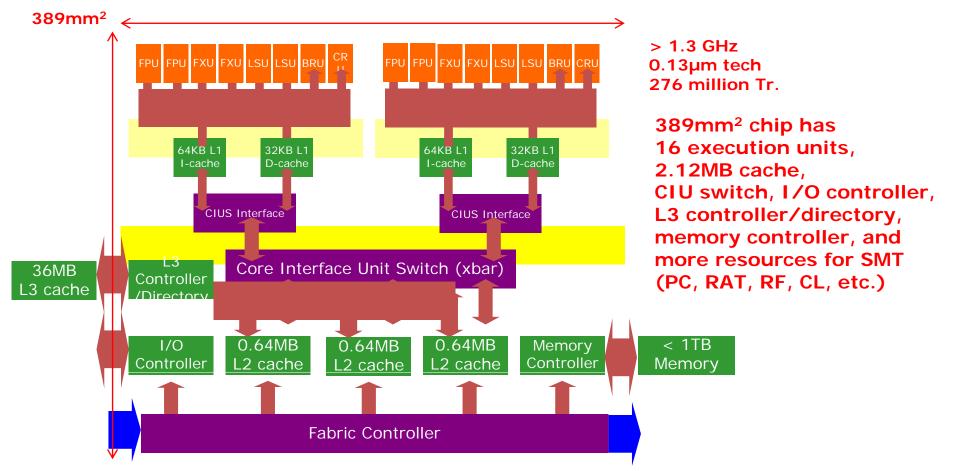
- Solution to cope with increasing circuit complexity.
 - System in terms of subsystems
 - Different Levels of Concepts and Abstraction
- Efficient reuse of designs and design experience
 - Pre-designed Intellectual property (IP) cores
 - Processors, Cache and Memory cores
 - DSP cores
 - Buses (?)
 - Meeting the TTM (time-to-market) constraint
- Facilitated by new design methodologies
 - Interface-based design
 - Platform-based design

On-Chip Interconnects


- Communication channels for functional modules (or IP blocks) integrated in a single chip.
 - Shared media like a bus
 - Dedicated point-to-point links
- So far, on-chip interconnects provide limited bandwidth for lower-performance, lower-power cores.
- Standardized bus systems with the incorporation of pre-designed Intellectual Property (IP) cores.
 - AMBA (Advanced Microcontroller Bus Architecture) by ARM
 - SiliconBackplane uNetwork by Sonics
 - CoreConnect by IBM

Popular Industry Solutions

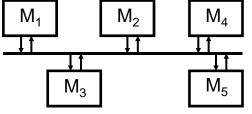
- AMBA (Advanced Microcontroller Bus Architecture)
 - ARM


School of Electrical and Electronic Engineering

Laboratory

High Density SoC Based on Buses

IBM POWER5 (Year 2004)



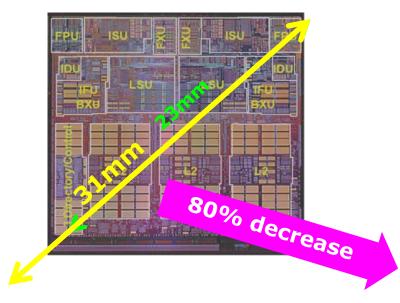
*Refer to http://www-03.ibm.com/servers/eserver/pseries/hardware/whitepapers/power4.html

Characteristics of Bus-based Interconnects

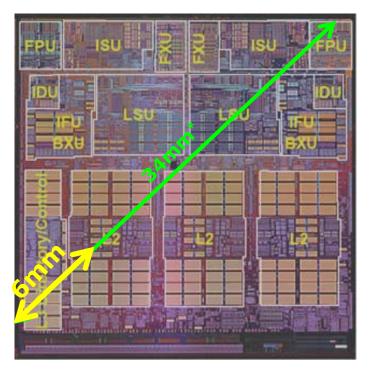
- Communication based on shared-medium (e.g. bus)
 - Multiplexer-oriented topologies
- Pros
 - Simple topology, low area cost and extensibility
- Cons
 - Performance bottleneck
 - Scalability problem
 - Power consumption inefficient
 - Unpredictable performance

Properties Limiting the Use of Bus

Wire delay


- Wires become "longer", and wire delay becomes a performance bottleneck
- Partition a long wire in segments with repeaters
- Synchronization problem
- Power
 - More energy consumption due to longer wires
 - To reduce delay, bigger drivers are used, which increase energy consumption
 - Typical solutions
 - Reduce voltage swing
 - Good for performance and power
 - But reduces noise margins => more errors!
 - Differential signaling
- Signal integrity
 - Growing capacitive and inductive coupling between wires
 - IR drop, Cross-talk, Electro-migration, ...

연세대학교 전기전자공학부 School of Electrical and Electronic Engineering


Reachable Physical Distance Per Clock

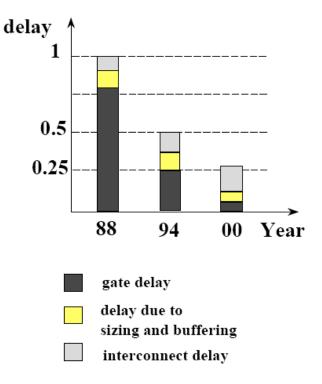
Reachable physical distance within one clock

1GHz POWER4 (.18µm)

8GHz* POWER6 (.065µm)

100% reachable in one clock 18% reachable in one clock

* Projected values (Year 2006)

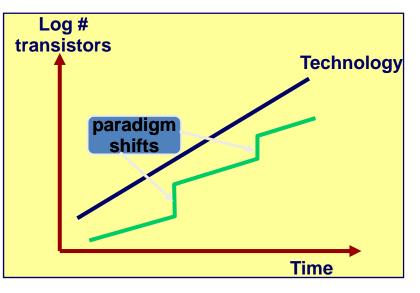


Performance Impact of On-Chip Interconnect

Operation	Delay	
	(0.13um)	(0.05um)
32b ALU Operation	650ps	250ps
32b Register Read	325ps	125ps
Read 32b from 8KB RAM	780ps	300ps
Transfer 32b across chip (10mm)	1400ps	2300ps
Transfer 32b across chip (20mm)	2800ps	4600ps

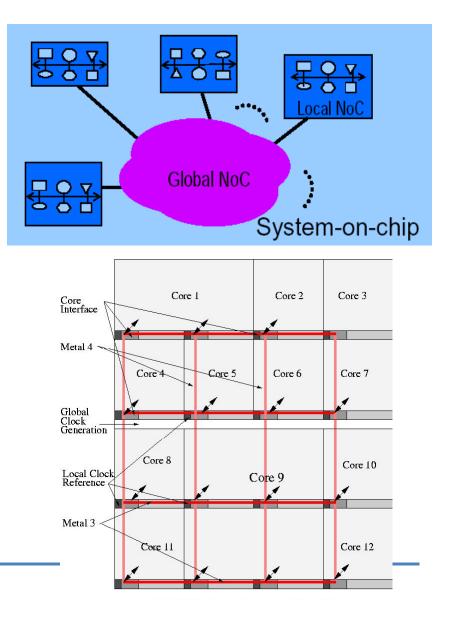
2:1 global on-chip comm to operation delay 9:1 in 2010

Taken from W.J. Dally presentation: Computer architecture is all about interconnect (it is now and it will be more so in 2010) HPCA Panel February 4, 2002

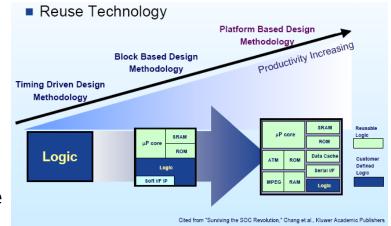


Challenges in SoC Design

Time-to-market pressure


- Design productivity gap
- Complexity
 - Heterogeneous
 - Deep submicron effects
 - Performance/Energy/Cost tradeoff
 - Scalable architecture
- New Design Paradigm
 - IP/Platform-based design
 - Error tolerant design strategy
 - Interconnect oriented design
- ⇒ Paradigms shifts in design methodology is the only escape

Network on Chip


- Communication channels for computer systems or modules integrated within a single chip.
 - Resources are interconnected by a network of switches.
- Large-scale integration of SoCs with the scalable interconnects

Advantages of NoC

- Reuse
 - Components and resources
 - Communication platform
 - Design and verification time
- Predictability
 - Communication performance
 - Electrical properties
- Scalability
 - Computing, Memory and Interconnection Resources
- Modular, compositional
 - Decoupling computation and communication

Yet Another Interconnection Network

(중) 연세대학교 전기전자공학부 Design School of Electrical and Electronic Engineering Laboratory

Outline

□ 연구실 소개

SoC architecture

Solid-State Disk

What is an SSD?

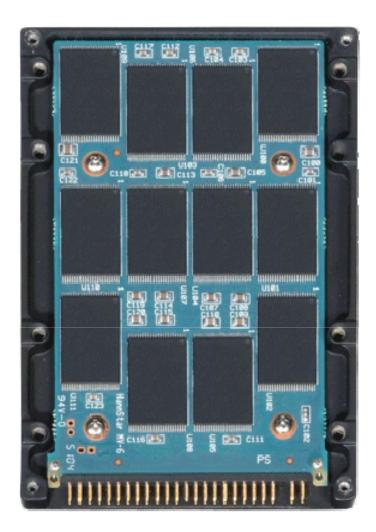
- Abbreviation for Solid-State Disk
 - A data storage device that uses solid-state memory
- "Solid-state"
 - built entirely from solid materials
 - contrast with the earlier technologies of vacuum and gas-discharge tube devices
 - electro-mechanical devices (relays, switches and other devices with moving parts) are excluded
 - Ex) Transistor, microprocessor, DRAM, flash memory...
- A drive built from non-volatile memory chips
 - not from magnetic disks as in HDD

Characteristics of SSD

Performance

- I/O performance superior to HDD
- Outstanding performance with RAID configuration
- Fully compatible SATA interface

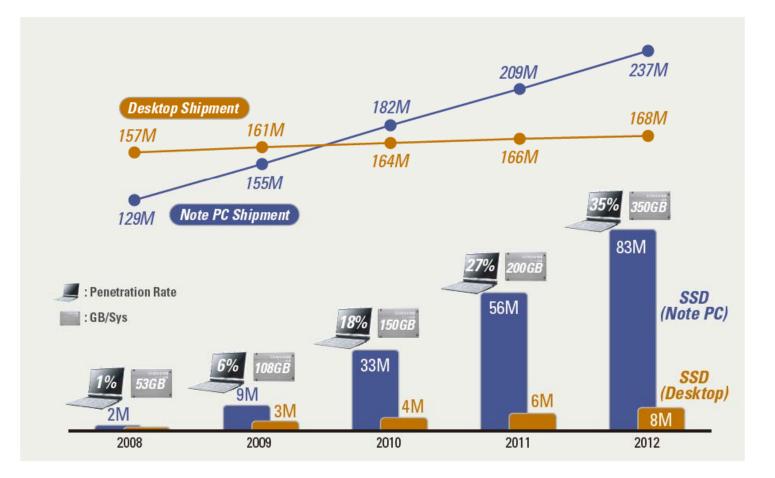
Durability and Stability


- Simple combination of semiconductor chips
- High shock and vibration tolerance
- MTBF superior to HDD

Power consumption

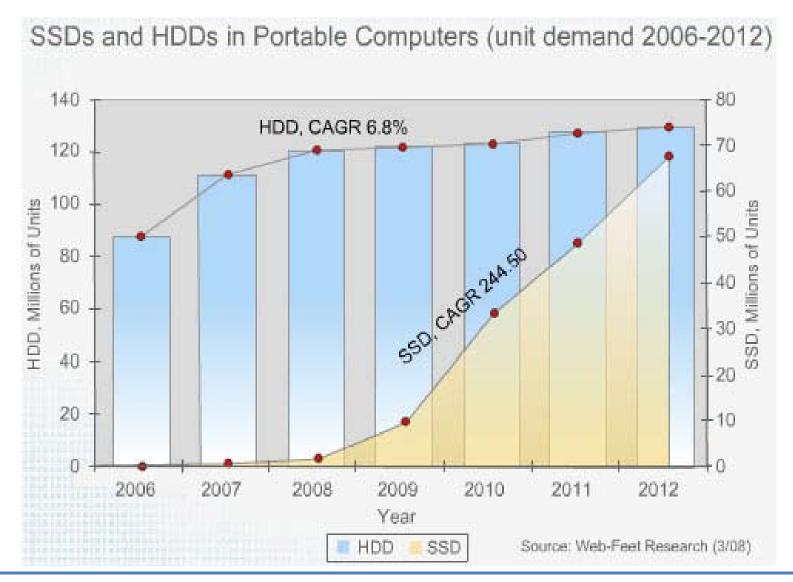
- Power consumed at data access only (under 3W)
- HDD always consumes power in order to operate mechanical parts (10~20W)

The Internals of SSD and HDD

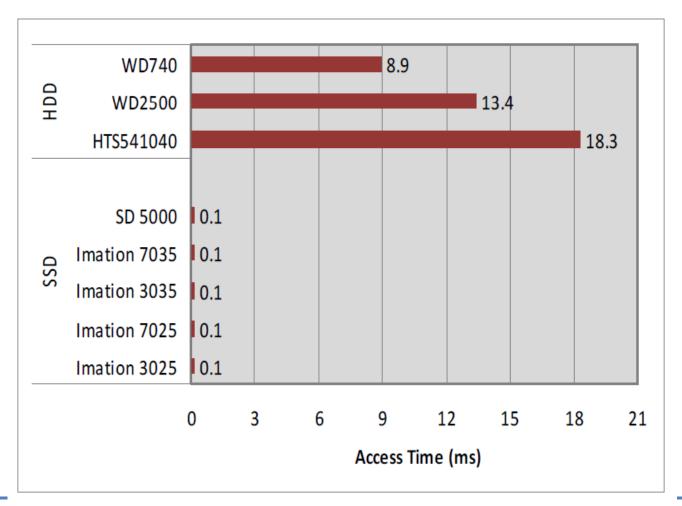


Comparative Analysis of SSD and HDD

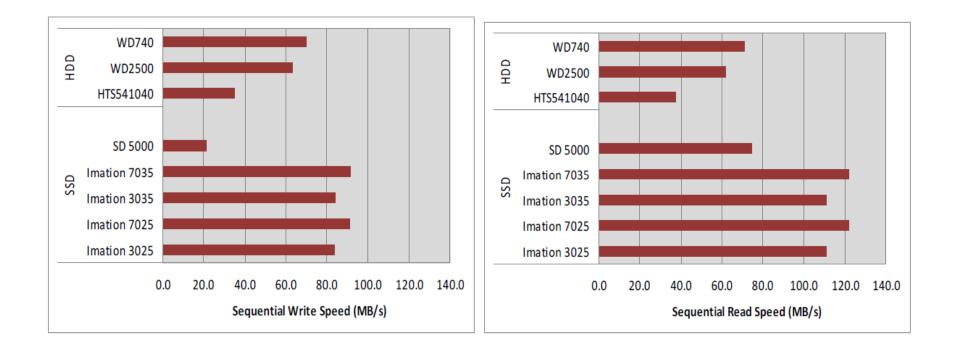
	SSD	HDD
Industry Standard Dimensions	V	V
Industry Standard Interface	v	~
Rugged / No Moving Parts	V	
Ultra Low Power Consumption	v	
Silent Operation	V	
Fast Access Time	V	
Fast Enter/Exit Hibernate	V	
Fast Sustained Read/Write Speed	V	V
Light Weight	V	
Low Costper GB		V
Very High Capacity		4


SSD Market Forecast

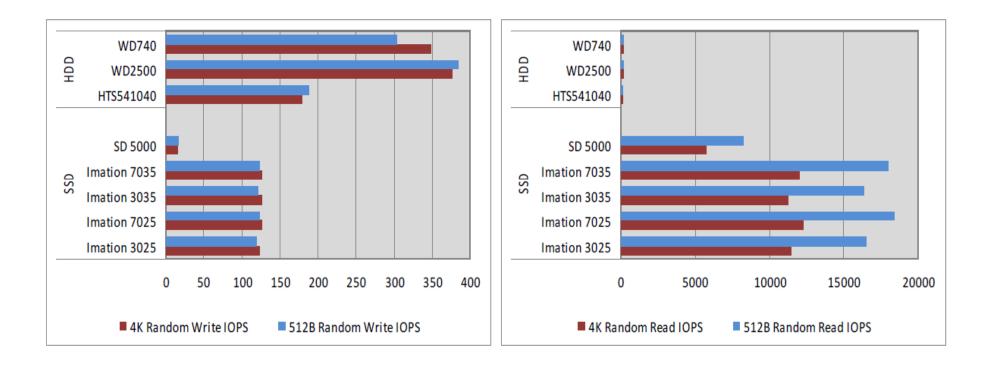
And smart devices...


Change in Storage market

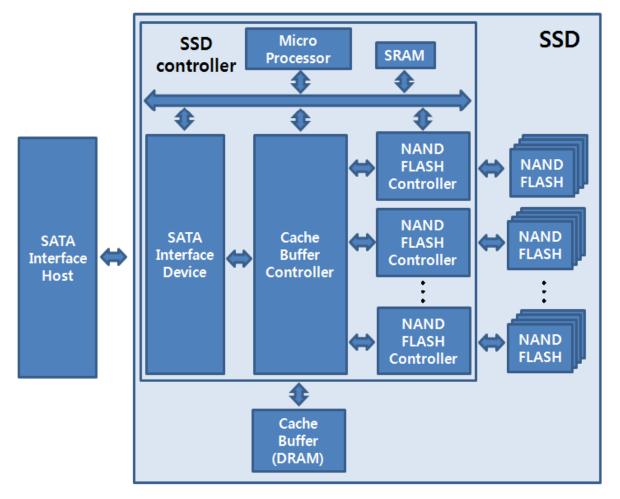
Performance Comparison (1)


Access time

Performance Comparison (2)


Sequential write and read

Performance Comparison (3)


Random write and read

The Architecture of SSD

Block diagram

The Architecture of SSD (cont)

Overall architecture

- Consists of an SSD controller and bunch of NAND flash memory chips
- The external interface of SSD is engaged into the host interface counterpart
- Microprocessor and internal bus
 - Control of other components of the SSD controller
 - Execute SSD management firmware named Flash Translation Layer (FTL)
- On-chip SRAM and SRAM controller
 - Fast SRAM is used for temporal storage of microprocessor
 - SRAM is typically embedded on the chip

The Architecture of SSD (cont)

External interface

- The system (OS) accesses the SSD by this interface
- SATA or other high-speed serial interfaces are used
- Cache Buffer and cache buffer controller
 - A disk usually have a cache buffer of several tens of MB
 - External DRAM is used for read cache and write buffer
- NAND flash and NAND flash controller
 - Single Level Cell (SLC) or Multi Level Cell (MLC)
 - Multi-channel / multi-way

Microcontroller

The brain of the SSD subsystem

- Execute the SSD firmware called flash translation layer
- Handle interrupts from other components such as external interface or cache buffer
- Flash Translation Layer (FTL)
 - An intermediate software layer between the host application and flash memory
 - Flash memory has limitation of "erase-before-write"
 - The FTL redirects each write request to an empty location that has been erased in advance
 - Extra storage to maintain the address translation information and extra flash memory operations to prepare empty locations are needed

SSD 평가 지표

Throughput

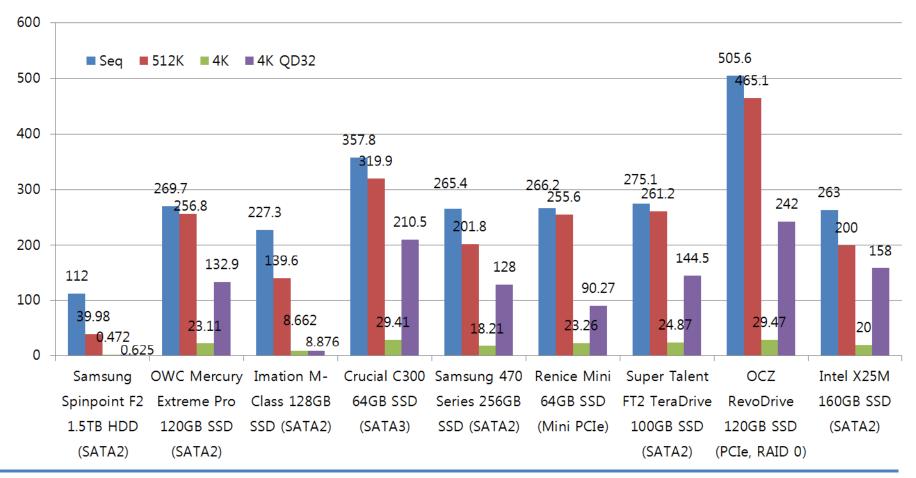
- MB/s
- Sequential data와 random data에 따라 다름
- Cost per Capacity
 - \$/GB
 - SSD의 주요 극복 과제 중 하나
- Power consumption
 - mW
 - Active 및 idle 상태에 따라 다름
 - 다채널 구조에서 특히 중요

사용된 Benchmark Tool

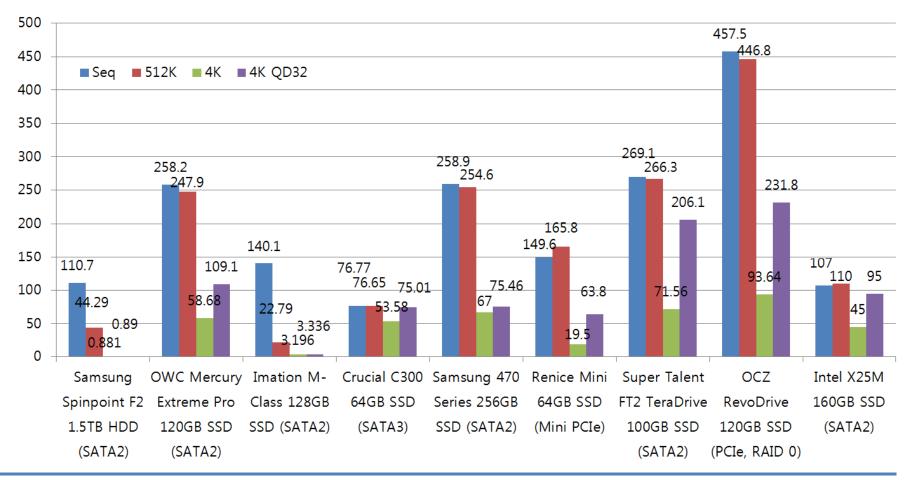
Crystal Disk Mark 3.0

- 기본적인 sequential/random read/write의 throughput
- Seq : sequential (1024KB block size)
- 512K : random (512KB block size)
- 4K : random (4K block size)
- 4K QD32 : random w/ NCQ depth 32 (4K block size)
 - 32 consecutive 4K data transactions
- PCMark Vantage
 - 특정 시나리오 별 throughput
 - Streaming game, importing photo, starting OS 등

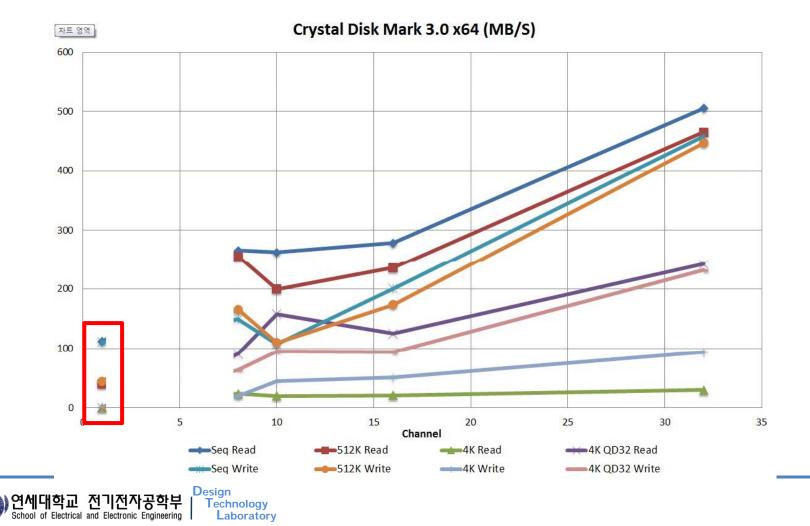
Benchmark 대상 디스크


❑ Benchmark 대상 디스크

Company	Product	Capa.	I/F	Ch.	Controller
Samsung	Spinpoint F2 HDD	1.5 TB	SATA 2	-	Samsung
OWC	Mercury Extreme Pro	120GB	SATA 2	16	Sandforce
Imation	M-Class	128GB	SATA 2	16	Phison
Crucial	C300	64GB	SATA 3	16	Marvell
Samsung	470 Series	256GB	SATA 2	16	Samsung
Renice	Mini	64GB	PCle	8	Sandforce
SuperTalent	FT2 TeraDrive	100GB	SATA 2	16	Sandforce
OCZ	RevoDrive	120GB	PCIe RAID 0	32	Sandforce
Intel	X25-M	160GB	SATA2	10	Intel


SSD Benchmark (1)

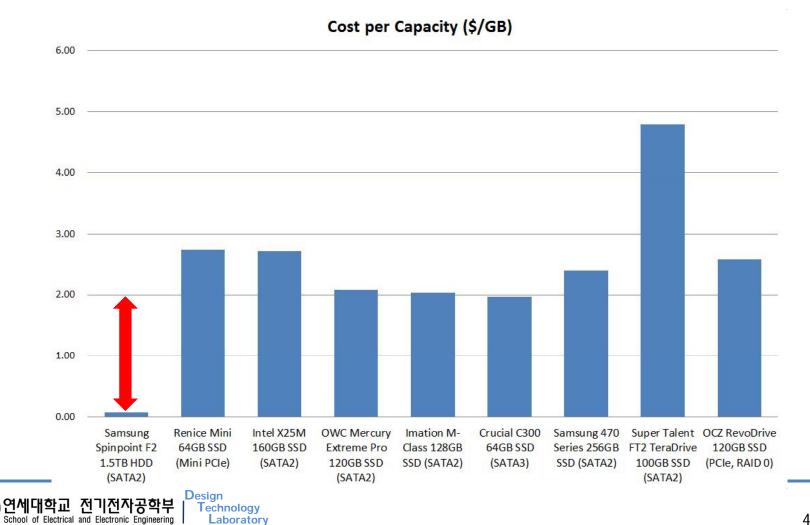
Crystal Disk Mark 3.0 – Read (MB/s)


SSD Benchmark (2)

Crystal Disk Mark 3.0 – Write (MB/s)

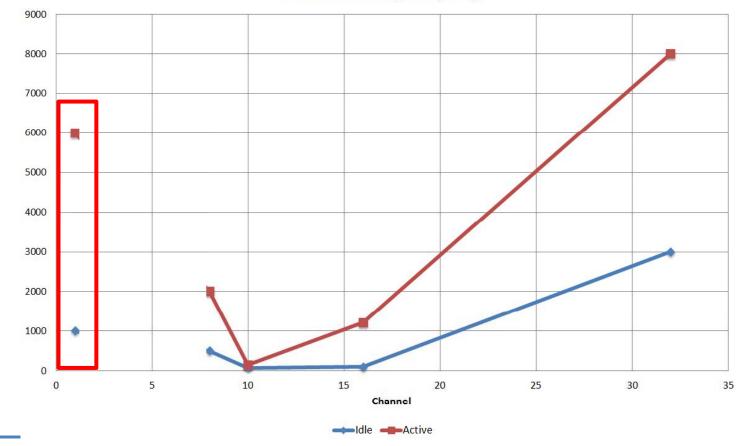
SSD Benchmark (3)

❑ Channel 개수 효과 – Synthetic trace



SSD Cost

 $\textcircled{0}{0}$


Cost per Capacity

Laboratory

SSD Power Consumption

Active vs Idle

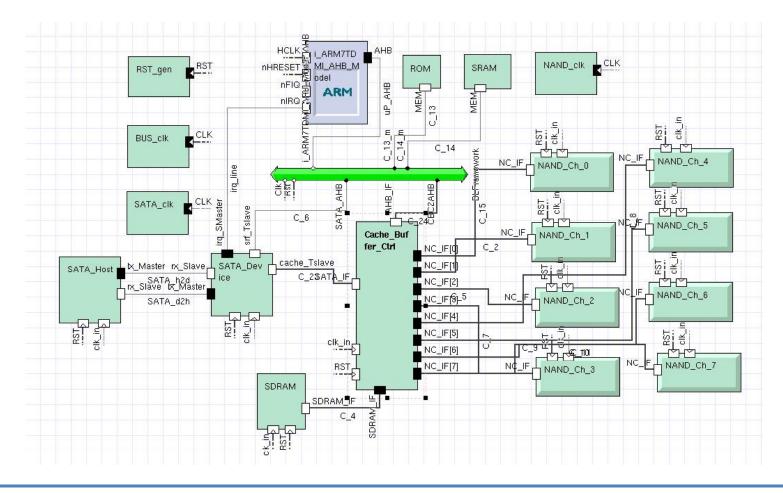
Power Consumption (mW)

DTL의 SSD 연구 Infra 기술

SSD simulator

- C/C++, SystemC와 같은 상위 수준 언어를 이용
- read() 또는 write()와 같은 transaction 단위 모델링
- 빠른 구현 및 RTL보다 10~1000배 빠른 시뮬레이션 가능

🗆 FTL


- 알고리즘 구현 후 이를 SSD 플랫폼에 porting 완료 수준
- BAST를 중심으로 여러 mapping 알고리즘 가능
- Garbage collection 및 wear-leveling 구현
- ❑ RTL IP 개발
 - DDR DRAM / NAND memory controller
 - Cache buffer controller

New architecture

Multi-core 기반 고속 구조 연구

SSD 구조 연구 [1]

❑ 개발한 SSD TLM platform의 구조

SSD 구조 연구 (2)

개발한 TLM platform의 특징

- FTL을 수행하는 프로세서 path와 disk data path 분리 구조
 - Data path는 bus가 아닌 point-to-point 연결로 전송 속도 향상
 - 전체 latency 향상에 기여
- Multi-channel / multi-way 지원
 - Sequential access에 효과적
- **DRAM** 캐시 버퍼
 - NAND의 성능이 전체 SSD 성능의 dominant part
 - 상대적으로 느린 NAND 영향 최소화를 위해 DRAM 캐시 버퍼 채 용
 - DRAM에 meta-data 및 data를 버퍼링하여 캐시로 활용
- 캐시버퍼 동작의 중요성
 - DRAM과 NAND를 동시에 사용하여 중첩효과를 극대화
 - 보조 전원 및 write-back 정책을 사용하여 early write confirm

FTL 연구 수준 (1)

- ❑ BAST/FAST 알고리즘 기반의 FTL 개발
 - Data block / log block을 사용하는 hybrid mapping
 - Block-level보다 고성능, page-level보다 저용량
- Channel / way interleaving
 - 단일 NAND 대상의 BAST를 복수 channel/way 구조에 적용
 - 각 channel/way에 interleaved 형태로 저장되도록 주소 매핑

Block	Page	Way	Channel	Sector
-------	------	-----	---------	--------

Free block queue

- Wear-leveling을 위해 free block을 관리하는 queue
- 최근 erase된 block을 나중에 사용함으로써 wear-leveling

FTL 연구 수준 (2)

On-demand mapping table loading

- FTL이 사용하는 SRAM의 크기는 현실적으로 제한적
- 대용량 SSD의 mapping table 전체를 SRAM에 load 불가
- SRAM ↔ DRAM ↔ NAND 계층구조에서 필요한 부분만 load
- Mapping table 전체는 NAND의 여러 page에 걸쳐 저장
- 필요한 mapping table의 fragment를 page 단위 load
- SRAM에 있는 fragment는 다양한 replacement 적용 가능
 - Ex) Round-Robin, Least Recently Used, Least Frequently Used

SSD 구조 연구 향후 지향점

- SSD simulator 구조 탐색 기능 확장
 - SATA NCQ를 최대한 활용하는 SSD scheduling
 - PCIe, USB 3.0 등 차세대 I/F 적용
 - Data 캐시버퍼와 meta-data 캐시버퍼 분리 및 정책 차별화
 - SLC/MLC 및 block/page 크기 등 NAND 구조 다변화
 - DDR synch NAND, PRAM 등 다양한 NVRAM 지원

SSD simulator 속도 향상

- 다양한 SSD 구조에 대한 timing model 도출
- 개발된 model은 Fast and Accurate simulator에 적용
- Power model 장착

FTL 연구 향후 지향점

❑ 다양한 FTL 알고리즘 구현

- Super-block FTL, LAST, KAST 등의 발표된 알고리즘
- 새로운 FTL 알고리즘 개발
- Meta-data loading 관련 분석
- ❑ Idle-time을 이용한 성능 향상
 - Idle-time을 수학적으로 예측
 - Idle-time에 수행하는 task의 scheduling
 - Ex) garbage collection
- Power-aware SSD simulator
 - Peak / average power management
 - Power failure 시 보조 전원을 통한 backup/recovery 기법

Summary

Data-intensive applications are getting popular

- Requires high-performance data storage and communication
- Power is also a critical factor
- On-chip interconnection network
 - Cascaded crossbar network is dominant
 - Automated method is essential to cope with the increased complexity
- Mass-storage devices
 - SSD will replace HDD soon.
 - Still a lot of issues to be addressed
 - Random access speed / peak power issue / power failure protection / ECC / meta data management ...

